
Signata
Release 0.1

Congruent Labs

Jun 25, 2022

CONTENTS

1 Contents 3
1.1 Chains . 3
1.2 Contracts . 3
1.3 DAO . 5
1.4 Design . 6
1.5 Examples . 9
1.6 Identities . 16
1.7 Integrations . 22
1.8 Links . 22
1.9 Risk . 23
1.10 Veriswap . 24

i

ii

Signata, Release 0.1

Signata is a Decentralized Identity project for smart contract-based blockchains.

• See Chains for implementation-specific differences between blockchains that Signata is deployed on.

• See Contracts for smart contract addresses.

• See DAO for details on governance for the project.

• See Design for architecture and design documentation.

• See Examples for examples on how to use Signata identities.

• See Identities for details on how identity lifecycle is managed on the chain.

• See Integrations for implementation details on integrations with the Signata platform.

• See Links for links to development communities and other connected services.

• See Risk for information on the Risk Oracle solution.

• See Veriswap for information about the Veriswap service.

Note: This project is under active development and smart contracts may be changed at any time.

CONTENTS 1

Signata, Release 0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Chains

1.2 Contracts

This document details all contract addresses for deployed contracts on each network in the sections below.

Use the relevant block explorer for the network to examine the contract deployment details.

Testnet contracts are not yet listed here. Most test contracts will only be deployed on the Ethereum testnets.

Note: These contracts are still in development and may change at a later date. Use this site to check the latest contract
addresses for any integrations you are developing.

1.2.1 Ethereum Mainnet

Address
SATA Token 0x3ebb4A4e91Ad83BE51F8d596533818b246F4bEe1
dSATA Token 0x49428f057dd9d20a8e4c6873e98afd8cd7146e3b
Governor 0x3D3255D21654B9a8325DfE6353ac6B37352Eb80B
Timelock 0x30b0106d9140902d7d495a7f21d282852e9f59d8
SignataIdentity 0x6B47e26A52a9B5B467b98142E382c081eA97B0fc
SignataRight 0x7c8890a02abd24ff00c4eb1425258ea4b611d300
Veriswap TBC
Deployer 0x042fc4ea3f836e1ea5dc4fb70ec90ded51c09eca
Token Vault 0xc77aab3c6d7dab46248f3cc3033c856171878bd5

3

Signata, Release 0.1

1.2.2 Ethereum Rinkeby

These addresses may change at any time.

Address
SignataIdentity 0xB24e28A4B7fED6d59D3BD06af586f02fDdfa6385
AtomicSwap 0x2dc3cd99b4e31805156886834e233903ff394032

1.2.3 Binance Smart Chain Mainnet

Address
SATA Token 0x6b1C8765C7EFf0b60706b0ae489EB9bb9667465A
SignataIdentity 0x2EE533c160eB0488f2Db54DA4523b110E66a96Ff
SignataRight 0x55E9B159FF6E6cD9188Cc4394db3EC944d467B0d
Veriswap TBC
Deployer 0xEAD57fE351280E7D905a5E21e9fd7d5bb0Ec97e7
Liquidity Vault 0x50e63fe25e8cf75c948a1ba26021ea0883cdc5b3

1.2.4 Avalanche C-Chain

Address
SATA Token 0xbec0A9aEa58b6a0c0f05a03078f7E7Dcecc13A95
SignataIdentity 0x3ebb4A4e91Ad83BE51F8d596533818b246F4bEe1
SignataRight 0x0BaFDe3aDAd83b679FAE5E9793Cd44ab247c6096
Veriswap TBC
Deployer 0x042fc4ea3f836e1ea5dc4fb70ec90ded51c09eca
Liquidity Vault TBC

1.2.5 LGCY Network

Address
SATA Token TBC
SignataIdentity TBC
SignataRight TBC
Veriswap TBC
Deployer TBC
Liquidity Vault TBC

4 Chapter 1. Contents

Signata, Release 0.1

1.2.6 Metis Stardust Network (Testnet)

Address
SATA Token 0x3ebb4A4e91Ad83BE51F8d596533818b246F4bEe1
SignataIdentity 0x545f8952A5cADF63DeE9658C189B309FAd5d789f
SignataRight 0xe1A0f23b29fba2c82d8af15D354aaE048AE1Cd13
Veriswap TBC
Deployer 0x042fc4ea3f836e1ea5dc4fb70ec90ded51c09eca
Liquidity Vault TBC

1.2.7 Metis Andromeda Network (Mainnet)

Address
SATA Token 0x3ebb4A4e91Ad83BE51F8d596533818b246F4bEe1
SignataIdentity 0x545f8952A5cADF63DeE9658C189B309FAd5d789f
SignataRight 0xe1A0f23b29fba2c82d8af15D354aaE048AE1Cd13
Veriswap TBC
Deployer 0x042fc4ea3f836e1ea5dc4fb70ec90ded51c09eca
Liquidity Vault TBC

1.2.8 Fantom Mainnet

Address
SATA Token 0x3ebb4A4e91Ad83BE51F8d596533818b246F4bEe1
SignataIdentity 0x545f8952A5cADF63DeE9658C189B309FAd5d789f
SignataRight 0xe1A0f23b29fba2c82d8af15D354aaE048AE1Cd13
Veriswap TBC
Deployer 0x042fc4ea3f836e1ea5dc4fb70ec90ded51c09eca
Liquidity Vault TBC

1.3 DAO

Signata Governance is currently managed on GitHub using a dedicated repository using Issues to track each proposal.

1.3.1 Management

All Signata DAO proposals are managed on GitHub.

GitHub

1.3. DAO 5

https://github.com/congruentlabs/signata-dao

Signata, Release 0.1

1.3.2 Interface

All Signata DAO contracts are implementations of OpenZeppelin standards, and so Tally has been used for DAO
management.

Tally

1.3.3 Timelock

Derived from OpenZeppelin Contracts (last updated v4.6.0) (governance/TimelockController.sol)

Verified Etherscan Contract

1.3.4 Governor

Derived from OpenZeppelin Contracts (last updated v4.6.0) (governance/Governor.sol)

Implements Governor, GovernorSettings, GovernorCompatibilityBravo, GovernorVotes, GovernorVotesQuorumFrac-
tion, and GovernorTimelockControl.

Verified Etherscan Contract

1.4 Design

Warning: This is a living document, and can change at any time.

1.4.1 Abstract

Developers of online services spend countless hours of effort in the construction of systems to collect private infor-
mation to identify users, and even more effort in maintenance of these systems to remain compliant with local and
international laws and regulations. Taking payment for services only adds to this burden, as organizations must pay
and rescind control to 3rd party service providers to deliver secure and fraud-resistant services for the collection and
management of payment information.

In this document we discuss the Signata service as a means to bind the next generation of identities: identities that
are kept anonymous from service providers, and we present IdGAF - the Identity Guard & Anonymity Framework as
a decentralized on-and-off-chain solution for the identification, authorization, and lifecycle management for modern
identity. We will present the ability for users to self-assert identities onto chains via smart contracts, as well as the
ability for service providers to validate and maintain known anonymous identities via off-chain solutions.

We will discuss the capabilities already in place with Signata for the management of hardware wallets and interactions
with blockchains, the next phases of the product to incorporate the IdGAF as a full identity and payment platform, to
introduce the new SATA token to back these systems, and how these services will provide the first proof of concept for
the independent integration of other services using this framework.

6 Chapter 1. Contents

https://www.tally.xyz/governance/eip155:1:0x3D3255D21654B9a8325DfE6353ac6B37352Eb80B
https://etherscan.io/address/0x30b0106d9140902d7d495a7f21d282852e9f59d8#code
https://etherscan.io/address/0x3D3255D21654B9a8325DfE6353ac6B37352Eb80B#code

Signata, Release 0.1

1.4.2 Introduction

The online identity management world is in a constant state of flux. Centralized identity providers (such as Google,
Facebook, and Okta) are attempting to lead the charge with centralized authentication services for simplified manage-
ment, and the era of the password is looking to quickly become obsolete. However, centralized identity management
requires users to rescind all control of their identity and access to the service providers that manage their identities,
instead of retaining the control over their individual authentication capabilities and identity assertions. These central-
ized providers typically fund themselves by building unprecedented tracking data on individuals, observing the use of
identities within their services and outside through an ever-growing network of online tracking systems.

Signata is a platform built by Congruent Labs to reveal the true smartcard capabilities of Yubico YubiKeys, bridge
individuals’ identities to their digital content, and to interact with blockchains. The core capability of Signata is cur-
rently to deliver a hardware-based wallet for cryptocurrency storage, but the technologies that underpin YubiKeys also
provide the ability to authenticate, digitally sign content, and bind identities to factors of authentication.

Signata’s use of well-established smartcard capabilities with YubiKeys drives a natural path to expansion of the Signata
service to integrate more functionalities such as authentication and digital signatures, but also for the expansion into
more integration of users identities and authentication systems onto blockchains instead of just interacting with them.

This document proposes to introduce a new ERC-20 token for Signata called SATA. This token will serve a number of
purposes. In future releases of the platform the SATA tokens will be used to interact with a platform of smart contract-
based decentralized identity services that Signata is currently developing - both as core internal capabilities for the
product, but additionally as on-and-off-chain anonymity preserving systems that external applications can integrate
and consume to build an identity ecosystem unbound by central authorities. This new platform will be known as the
Identity Guard & Anonymity Framework (IdGAF).

We believe existing capabilities of identity management on blockchains is trying to realise protocols and systems that
were designed against non-blockchain systems - Signata will instead deliver a platform that maintains the core tenants
of blockchains, being:

• Anonymous but cryptographically trusted identification of individuals,

• Decentralized assertion of content, and

• Secured payment for services or interactions on the chain.

Service Providers using IDGAF, including Signata as the first proof of concept, will be able to securely authenticate
and authorize users with anonymous credentials by combining on-chain verification of data produced by the credential
holder (assuring ownership of the credential), on-chain verification of authorizations, and off-chain verification of
information held within the service itself (ensuring the credential receives appropriate authorization).

This capability will allow for service providers to authenticate users, collect payments, and provide access control to
systems without knowing any identifiable information about the user - unless they want to collect that information
themselves and the user consents to the collection of the information.

1.4.3 Product Description

IdGAF (Identity Guard & Anonymity Framework)

The Identity Guard & Anonymity Framework will be delivered as a set of on-chain contracts and off-chain systems to
deliver a fully-capable authentication service for applications. This framework will deliver a number of key subsystems,
each bound or related to the cryptographic capabilities of blockchain addresses, records, and interactions.

As each of these systems is built and released, they will be delivered within an open identity marketplace, although the
open source nature of these components will not be constrained to exclusive access via this marketplace.

1.4. Design 7

Signata, Release 0.1

Self-Asserted Identity Authorities

Each individual will establish an anchor credential within their chosen device. This anchor credential will be retained
to approve the binding of addresses added or imported from other systems, providing users the capability to self-assert
approval of cryptographic material for use with authentication and authorization.

Users are not restricted in the issuance of their own authority credentials, nor are they limited in the number of creden-
tials issued by their authorities, so that users can adapt their identities to the specific contexts that they are asserting
them within.

Users may, in normal operations, lose access to or have their identity authorities compromised. In the event of an
identified compromise, the individual can either self-assert the cancellation of their own identity authority (assuming
they still retain control over it), or replace their identity authority with a new authority (and undertake re-assertion of
the new authority to connected providers).

Identity authorities ultimately introduce the largest vector of attack from external parties - compromise the authority and
one can deny service or assume the identity of the stolen authority. One of the mitigations for this attack vector will be
the enforcement of hardware-based key storage will be essential to the manner in which users interact with the IdGAF,
much akin to how the Universal 2nd Factor (U2F) provides hardware-based protection to the use of authentication
credentials. Not all authentication systems can interact with hardware devices (including many mobile devices limited
by physical interfaces and operating system policies), and so a credential delegation capability will also be introduced
to facilitate the creation of credentials issued with constrained capabilities to ensure that users can still access systems
they need without exposing credentials to undue risk within lower-assurance devices.

Anonymized Identity Providers (DeREx)

In the current Identity Provider market, most providers offer the combination of some form of persistent identity col-
lection solution, single sign-on capabilities, session management across services, and (for more advanced integrations)
adaptive risk solutions for observing unexpected user behaviour.

Connected IdGAF service providers will instead deliver the core capability of persisting identities but retaining
anonymity, as well as offering the ability for the capture and management of payment for services directly linked
to the identity provider. With this integrated approach system developers no longer need to integrate two disparate
systems to achieve the same overall outcome for their products - users can authenticate securely and pay for services
within the same set of transactions, and without needing to surrender personally identifiable information to the service
provider.

Service providers can additionally relieve themselves of the responsibility to capture and store identity and payment
information, removing the potential exposure of identifiable information once a system has experienced a data breach
or leak.

Connected providers will be presented as the Decentralized Rights Exchange (DeREx), providing a unified platform
for 3rd parties to integrate and consume these services.

Decentralized X.509 (Dex509)

Public Key Infrastructure (PKI) systems have been built and naturally evolved to suit operation on blockchains. Con-
sidering the core capabilities of certificate authorities, the security controls imposed to protect them are designed to
effectively replicate the features that blockchains now inherently offer - they store an immutable sequence of events
much like the individual blocks and transactions managed on chains.

IdGAF-enabled services that interact with authentication, signing, and encryption certificates will be able to addition-
ally push and pull certificate records into the chains. Assertions of authority/signing status of public keys will permit
service providers to inherently trust assertions made by specified authorities as a transitive, but still anonymous, trust
model similar to trust models within the PKI ecosystem.

8 Chapter 1. Contents

Signata, Release 0.1

1.4.4 Disclaimer

The plans, strategies, and implementation details described in this whitepaper will likely evolve and, accordingly, may
never be adopted. Congruent Labs Pty Ltd reserves the right to develop or pursue additional or alternative plans,
strategies, or implementation details associated with the Signata platform.

SATA tokens are being distributed by Congruent Labs Pty Ltd pursuant to the Terms and Conditions (the “terms”) of
the token available at https://sata.technology/. For complete details, review the terms. SATA tokens are not securities,
investments, or currency, and are not sold or marketed as such. Participation in the collection of SATA tokens involves
significant technological and systemic risks. The distribution of SATA tokens is not open to individuals who reside
in or are citizens of the United States or Canada. The distribution period, duration, pricing, and other provisions may
change as stated in the terms. SATA tokens do not in any way represent any shareholding, participation, right, title,
or interest in Congruent Labs Pty Ltd, their respective affiliates, or any other company, enterprise, or undertaking, nor
will SATA entitle token holders to any promise of fees, dividends, revenue, profits, or investment returns, and are not
intended to constitute securities in Australia or any relevant jurisdiction.

The SATA token distribution involves known and unknown risks, uncertainties, and other factors that may cause the
actual functionality, utility, or levels of use of SATA tokens to be materially different from any projected future results,
use, functionality, or utility expressed or implied by Congruent Labs Pty Ltd in the terms.

1.5 Examples

Warning: Any source code provided on this site is unaudited and provides no guarantee that it will be functional
or safe to use. Ensure you test before deploying to mainnet or production use.

1.5.1 Applying Signata Identities to Authentication Systems

Claims-based Enforcement

TODO

1.5.2 Applying Signata Identities to Smart Contracts

An identity by itself is of no value. Its value is derived from those that recognise it, and what systems it can be
interconnected to.

This document details the application of Signata identities to blockchain-based systems. It does not prescribe a rec-
ommended or best-practice approach for integration, only a starting point that can be developed upon for real-world
systems.

Integrating identity validation into smart contracts is extremely simple - connecting to an instance of the SignataIdentity
and SignataRights contracts within a network will provide the basis of enforcing Signata-based identity enforcement
into any contract function that you wish to use it in.

1.5. Examples 9

https://sata.technology/

Signata, Release 0.1

Simple Access Control

At a basic level, smart contracts can verify that an address has been registered with an identity contract.

For open identity contracts this provides next to no assurance as any address may register themselves as an identity
and pass this check. But for an access-controlled identity contract, the provisioning of the identity can be restricted to
specific accounts with a process of issuance having been performed by the contract owner.

SignataIdentity private signataIdentity;

/* ... */

// get delegate - will throw if the identity does not exist
signataIdentity.getDelegate(msg.sender);

// or check if locked - also will throw if the identity doesn't exist
// and will also reject locked identities
require(

!signataIdentity.isLocked(msg.sender),
"The sender's identity is locked."

);

Rights Based Access Control

To enforce stronger access control in contracts, validating that an address holds a specific ERC721 right is possible by
checking against those that have been

At a basic level, smart contracts can verify that an address has been registered with an identity contract.

For open identity contracts this provides next to no assurance as any address may register themselves as an identity
and pass this check. But for an access-controlled identity contract, the provisioning of the identity can be restricted to
specific accounts with a process of issuance having been performed by the contract owner.

SignataRight private signataRight;
SignataIdentity private signataIdentity;
address private trustedMinter;

/* ... */

// check the minter of an asserted right
require (signataRight.minterOf(nftRightIndex) == trustedMinter, "Right is not from␣
→˓trusted minter");

// get the delegate address of the sender
address delegateAddress = signataIdentity.getDelegate(msg.sender);

// check the owner of the asserted right
require (signataRight.ownerOf(nftRightIndex) == delegateAddress, "Right is not owned by␣
→˓sender!");

With these three checks above, we’ve validated that the asserted right of the sender is actually owned by them via their
identity delegate key, we’ve validated that the identity is actually currently active (getDelegate will fail if the identity
is currently locked or destroyed), and we’ve validated that the minting of the right came from a trusted source.

10 Chapter 1. Contents

Signata, Release 0.1

Business Register

Most jurisdictions will manage a public registry of all operating businesses, tracking each with a unique identifier so
they’re identifiable separately to the individuals that own, operate, or work in those businesses.

TODO

Staking Pool

For staking pools, you can simply deny entry to the pool if the user does not hold a specific identity or right.

And for unstaking, adding the same checks can ensure that a mutated identity cannot claim the rewards if that is a
desired outcome.

SignataIdentity private signataIdentity;

/* ... */

function stakeTokens(uint256 _amount, uint256[] memory _tokenIds) public {
require(
getLastStakableBlock() > block.number,
'this farm is expired and no more stakers can be added'

);

// try to get the delegate of the account. this will fail if the account isn't␣
→˓registered, or is in an unusable state
signataIdentity.getDelegate(msg.sender);

_updatePool();

if (balanceOf(msg.sender) > 0) {
_harvestTokens(msg.sender);

}

uint256 _finalAmountTransferred;
if (pool.isStakedNft) {
require(
_tokenIds.length > 0,
"you need to provide NFT token IDs you're staking"

);
for (uint256 _i = 0; _i < _tokenIds.length; _i++) {
_stakedERC721.transferFrom(msg.sender, address(this), _tokenIds[_i]);

}

_finalAmountTransferred = _tokenIds.length;
} else {
uint256 _contractBalanceBefore = _stakedERC20.balanceOf(address(this));
_stakedERC20.transferFrom(msg.sender, address(this), _amount);

// in the event a token contract on transfer taxes, burns, etc. tokens
// the contract might not get the entire amount that the user originally
// transferred. Need to calculate from the previous contract balance
// so we know how many were actually transferred.
_finalAmountTransferred = _stakedERC20.balanceOf(address(this)).sub(

(continues on next page)

1.5. Examples 11

Signata, Release 0.1

(continued from previous page)

_contractBalanceBefore
);

}

if (totalSupply() == 0) {
pool.creationBlock = block.number;
pool.lastRewardBlock = block.number;

}
_mint(msg.sender, _finalAmountTransferred);
StakerInfo storage _staker = stakers[msg.sender];
_staker.amountStaked = _staker.amountStaked.add(_finalAmountTransferred);
_staker.blockOriginallyStaked = block.number;
_staker.timeOriginallyStaked = block.timestamp;
_staker.blockLastHarvested = block.number;
_staker.rewardDebt = _staker.amountStaked.mul(pool.accERC20PerShare).div(
1e36

);
for (uint256 _i = 0; _i < _tokenIds.length; _i++) {
_staker.nftTokenIds.push(_tokenIds[_i]);

}
_updNumStaked(_finalAmountTransferred, 'add');
emit Deposit(msg.sender, _finalAmountTransferred);

}
/* ... */

Token Lock

Token locks can be restricted to only accept locks from validated identities, before the lock is created.

SignataIdentity private signataIdentity;

/* ... */

function createLocker(
address _tokenAddress,
uint256 _amountOrTokenId,
uint48 _end,
uint8 _numberVests,
address[] memory _withdrawableAddresses,
bool _isNft

) external payable {
require(
_end > block.timestamp,
'Locker end date must be after current time.'

);

// try to get the delegate of the account. this will fail if the account isn't␣
→˓registered, or is in an unusable state
signataIdentity.getDelegate(msg.sender);

_payForService(0);
(continues on next page)

12 Chapter 1. Contents

Signata, Release 0.1

(continued from previous page)

if (_isNft) {
IERC721 _token = IERC721(_tokenAddress);
_token.transferFrom(msg.sender, address(this), _amountOrTokenId);

} else {
IERC20 _token = IERC20(_tokenAddress);
_token.transferFrom(msg.sender, address(this), _amountOrTokenId);

}

lockers.push(
Locker({
owner: msg.sender,
isNft: _isNft,
token: _tokenAddress,
amountSupply: _isNft ? 1 : _amountOrTokenId,
tokenId: _isNft ? _amountOrTokenId : 0,
start: uint48(block.timestamp),
end: _end,
withdrawable: _withdrawableAddresses,
amountWithdrawn: 0,
numberVests: _isNft ? 1 : (_numberVests == 0 ? 1 : _numberVests)

})
);
uint16 _newIdx = uint16(lockers.length - 1);
lockersByOwner[msg.sender].push(_newIdx);
lockersByToken[_tokenAddress].push(_newIdx);
if (_withdrawableAddresses.length > 0) {
for (uint16 _i = 0; _i < _withdrawableAddresses.length; _i++) {
lockersByWithdrawable[_withdrawableAddresses[_i]].push(_newIdx);

}
}
emit CreateLocker(msg.sender, _newIdx);

}
/* ... */

DAO Governor with Identity Validation

The simplest way to enforce identity usage within a DAO is to just validate the voter when they attempt to cast votes or
delegate their voting rights.

/* override votes on the governor */
castVote(uint256 proposalId, uint8 support)
castVoteWithReason(uint256 proposalId, uint8 support, string reason)
castVoteWithReasonAndParams(uint256 proposalId, uint8 support, string reason, bytes␣
→˓params)
castVoteBySig(uint256 proposalId, uint8 support, uint8 v, bytes32 r, bytes32 s)
castVoteWithReasonAndParamsBySig(uint256 proposalId, uint8 support, string reason, bytes␣
→˓params, uint8 v, bytes32 r, bytes32 s)

/* override delegation on the token contract */
delegate(address delegatee)

(continues on next page)

1.5. Examples 13

Signata, Release 0.1

(continued from previous page)

delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r,␣
→˓bytes32 s)

Batch Airdrop

Note: this is not a common way to do airdrops, as batch ERC20 token transactions are expensive for the sender. If you
do wish to distribute tokens in this manner, then you can skip any recipients that aren’t registered identities.

SignataIdentity private signataIdentity;

/* ... */
function bulkSendErc20Tokens(
address _tokenAddress,
Receiver[] memory _addressesAndAmounts

) external payable returns (bool) {
_payForService(0);

IERC20 _token = IERC20(_tokenAddress);
for (uint256 _i = 0; _i < _addressesAndAmounts.length; _i++) {

Receiver memory _user = _addressesAndAmounts[_i];

try signataIdentity.getDelegate(_user.userAddress) {
_token.transferFrom(msg.sender, _user.userAddress, _user.amountOrTokenId);

} catch { } // ignoring the index if the identity was not found
}
return true;

}
/* ... */

Merkle Airdrop

Merkle-based drops are far more cost effective for distributing tokens to a large number of holders. If you wish to only
distribute tokens to created identities, or identities that hold a specific NFT right (such as a KYC claim), then you can
simply inject a check into the claim function to prevent invalid identities from claiming the airdrop.

For a merkle-based drop it would be advisable to only create the proofs for addresses that are actually valid in the first
place, performing that computation off-chain, but as identities may mutate after the claim contract is deployed it can
provide an extra level of on-chain assurance.

/* ... */
function claim(uint256 index, address account, uint256 amount, bytes32[] calldata␣
→˓merkleProof) external override {
require(claimsEnabled, "Airdrop::claim: Claims not enabled.");
require(!isClaimed(index), "Airdrop::claim: Drop already claimed.");

// try to get the delegate of the account. this will fail if the account isn't␣
→˓registered, or is in an unusable state
signataIdentity.getDelegate(account);

(continues on next page)

14 Chapter 1. Contents

Signata, Release 0.1

(continued from previous page)

bytes32 node = keccak256(abi.encodePacked(index, account, amount));
require(MerkleProof.verify(merkleProof, merkleRoot, node), "Airdrop::claim: Invalid␣

→˓proof.");

_setClaimed(index);

require(token.transfer(msg.sender, amount), "Airdrop::claim: Transfer failed.");
emit Claimed(index, msg.sender, amount);

}
/* ... */

Dividend Rewards Distribution

Some DeFi projects use “dividend” based distribution of assets. Enforcing of holding an identity, or a specific NFT
right, can be simply included in-line with functions that set the balance of the address. If it holds a Signata Identity,
then it can receive a balance fo the dividend contract. Otherwise it is treated like an excluded contract

/* ... */
function setBalance(address payable account, uint256 newBalance)

external
onlyOwner

{
if (excludedFromRewards[account]) {

return;
}

// if it's not a registered identity, then it will be treated like it's in the␣
→˓exclusion list

try signataIdentity.getDelegate(account) {
if (newBalance >= minTokenBalanceForRewards) {

_setBalance(account, newBalance);
} else {

_setBalance(account, 0);
}

} catch { return; }
}
/* ... */

1.5. Examples 15

Signata, Release 0.1

1.6 Identities

1.6.1 About Signata Identities

An identity is created with 3 keys, an Identity key, a Delegate key, and a Security key.

Note that the examples in this documentation are provided in JavaScript and are derived from the sata-contracts-v1
repository unit tests. If you wish to see more comprehensive details on how to interact with Signata identities, then for
now the unit tests are the best option.

Elliptic curve signatures in the examples below are created using ethereumjs-util. Any time you see Util.
ecsign(..., it will have come from the following import:

const Util = require('ethereumjs-util');

Cryptographic signing in other languages can vary considerably.

About Key Lifecycles

Each time a private key is used for any publicly-available information (such as digitally signed records), the risk of key
material compromise will increase through known-plaintext attacks. Most Public Key Infrastructure systems enforce
key life limits (typically 1 to 2 years) on an active key, rolling over to new keys before the key could theorically become
compromised.

Signata will not enforce key lifespan lengths for identities, however the use of the 3-key identity lifecycle model will
help to mitigate any risk of exposure through prolonged use of an identity, and also allow for simple rollover to a new
set of keys if a user suspects any compromise.

The recommended approach to handling keys with Signata identities is to use 3 separate seeds for deriving the 3 keys
needed to create each identity. Simply derive the 0th key from each seed for the first identity, then the 1st key from
each seed for the second identity, and so on. In the unit test suite you will see we have derived all keys from the same
seed - this was done purely to keep the unit tests simple but is not the recommended approach for production use.

Identity Key

The identity key is the core identity identifier. This key is intentionally “useless” in the context of lifecycle management
with Signata. That is, it cannot be used to perform lifecycle event management of itself, just to ensure the key material
is not used extraneously. It will bear all rights assigned to it, and be used for proving ownership, but all lifecycle events
are instead handled by the Delegate Key.

Delegate Key

The delegate key is the lifecycle management key for a Signata identity. It is used to lock, unlock, destroy, and rollover
identities after they are created.

It is not recommended that these keys be derived from the same seed as the identity key, otherwise a seed compromise
will immediately compromise this key as well.

16 Chapter 1. Contents

Signata, Release 0.1

Security Key

The security key is a fallback key, specifically designed to provide recovery mechanisms in the event of a compromise.
In ideal circumstances this key should never be needed to be used, it will only be used for important lifecycle events.

It is not recommended that these keys be derived from the same seed as the identity key, otherwise a seed compromise
will immediately compromise this key as well.

Domain Separator

TODO: Define this

const CHAINID = 1; // CHAINID is determined from the network the contract is deployed on,
→˓ it's set as the ETH mainnet ID here for the example

const IDENTITY_CONTRACT_ADDRESS = '0x6B47e26A52a9B5B467b98142E382c081eA97B0fc'; // again,
→˓ this is an example. This is just the ETH mainnet ID contract address.

// these consts are fixed for all networks:
const EIP712DOMAINTYPE_DIGEST =
→˓'0xd87cd6ef79d4e2b95e15ce8abf732db51ec771f1ca2edccf22a46c729ac56472';
const NAME_DIGEST = '0xfc8e166e81add347414f67a8064c94523802ae76625708af4cddc107b656844f';
const VERSION_DIGEST =
→˓'0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6';
const SALT = '0x233cdb81615d25013bb0519fbe69c16ddc77f9fa6a9395bd2aecfdfc1c0896e3';

// deriving the DOMAIN_SEPARATOR for the contract. You can derive this at any time after␣
→˓the contract has been deployed.
const DOMAIN_SEPARATOR = web3.utils.sha3(
EIP712DOMAINTYPE_DIGEST
+ NAME_DIGEST.slice(2)
+ VERSION_DIGEST.slice(2)
+ CHAINID.toString('16').padStart(64, '0')
+ IDENTITY_CONTRACT_ADDRESS.slice(2).padStart(64, '0')
+ SALT.slice(2),

{encoding: 'hex'}
);

1.6.2 Creating an Identity

An identity is registered within the SignataIdentity contract using the following process:

• A SHA3 Hash is generated of the truncation of the TXTYPE_CREATE_DIGEST, the Delegate Address, and the
Security Address.

• The SHA3 Hash is digitally signed by the Identity Private Key.

• The SHA3 Hash, the Delegate Address, and the Security Address are sent to create() with the sender
being the Identity Key to register the identity.

• A Create event is emitted from the contract upon successful creation.

All three keys must be distinct, and they cannot already be in use with another identity (that is, you cannot re-use any
of the keys more than once).

TODO: Define the purpose of 0x1901 before the DOMAIN_SEPARATOR

1.6. Identities 17

Signata, Release 0.1

const TXTYPE_CREATE_DIGEST =
→˓'0x469a26f6afcc5806677c064ceb4b952f409123d7e70ab1fd0a51e86205b9937b';

const inputHash = web3.utils.sha3(
TXTYPE_CREATE_DIGEST
+ d1.slice(2).padStart(64, '0')
+ s1.slice(2).padStart(64, '0'),

{encoding: 'hex'}
);

const hashToSign = web3.utils.sha3(
'0x19' + '01' + DOMAIN_SEPARATOR.slice(2) + inputHash.slice(2),
{encoding: 'hex'}

);

const { r, s, v } = Util.ecsign(
Buffer.from(hashToSign.slice(2), 'hex'),
Buffer.from(i1Private.slice(2), 'hex')

);

const createReceipt = await idContract.create(v, r, s, d1, s1, { from: i1 });

await expectEvent(createReceipt, 'Create', {
identity: i1,
delegateKey: d1,
securityKey: s1

});

1.6.3 Locking an Identity

To prevent an identity being modified or used, such as in the event you believe it has been compromised, you can flag
the identity as “locked”. You will not be able to use the identity whilst it is locked, but the delegate can still perform a
rollover to ensure any compromise can be mitigated.

Locking is just a call to the lock() function by the delegate, no additional signatures are needed.

await expectEvent(await idContract.lock(i1, { from: d1 }), 'Lock', { identity: i1 });

expect(await idContract.isLocked(i1, { from: i1 })).to.equal(true);

Unlocking an identity is more complicated and will be covered in its own section.

1.6.4 Unlocking an Identity

To unlock an identity, the delegate and security keys are needed to digitally sign the authorization of unlocking.

This is more complicated than locking, as locking is designed to be able to able to be performed quickly to respond to
a threat but unlocking to require a user to assess whether the original threat still remains.

const TXTYPE_UNLOCK_DIGEST =
→˓'0xd814812ff462bae7ba452aadd08061fe1b4bda9916c0c4a84c25a78985670a7b';

(continues on next page)

18 Chapter 1. Contents

Signata, Release 0.1

(continued from previous page)

const inputHash = web3.utils.sha3(TXTYPE_UNLOCK_DIGEST + "0x01".slice(2).padStart(64, '0
→˓'), {encoding: 'hex'});

const hashToSign = web3.utils.sha3(
'0x19' + '01' + DOMAIN_SEPARATOR.slice(2) + inputHash.slice(2),
{encoding: 'hex'}

);

const sig1 = Util.ecsign(
Buffer.from(hashToSign.slice(2), 'hex'),
Buffer.from(d2Private.slice(2), 'hex')

);

const delegateV = sig1.v;
const delegateR = sig1.r;
const delegateS = sig1.s;

const sig2 = Util.ecsign(
Buffer.from(hashToSign.slice(2), 'hex'),
Buffer.from(s2Private.slice(2), 'hex')

);

const securityV = sig2.v;
const securityR = sig2.r;
const securityS = sig2.s;

const unlockReceipt = await idContract.unlock(
i2,
delegateV,
delegateR,
delegateS,
securityV,
securityR,
securityS,
{ from: d2 }

);

await expectEvent(unlockReceipt, 'Unlock', {
identity: i2

});

1.6.5 Destroying an Identity

Once an identity is no longer required, it can be destroyed to prevent further use. Identity destruction cannot be undone,
it is permanent. If you wish to disable an identity temporarily, just lock it instead.

Identity destruction requires both the delegate and the security keys to digitally sign the authorization of destruc-
tion.

Also bear in mind that this is a blockchain and all the history of the identity will still remain on the chain after de-
struction. Destruction in this case simply means to prevent the key from ever being used again in the Signata identity
ecosystem, and identity providers must honour the mutation that has been made.

1.6. Identities 19

Signata, Release 0.1

const TXTYPE_DESTROY_DIGEST =
→˓'0x21459c8977584463672e32d031e5caf426140890a0f0d2172da41491b70ef9f5';

const inputHash = web3.utils.sha3(TXTYPE_DESTROY_DIGEST, {encoding: 'hex'});

const hashToSign = web3.utils.sha3(
'0x19' + '01' + DOMAIN_SEPARATOR.slice(2) + inputHash.slice(2),
{encoding: 'hex'}

);

const sig1 = Util.ecsign(
Buffer.from(hashToSign.slice(2), 'hex'),
Buffer.from(d1Private.slice(2), 'hex')

);

const delegateV = sig1.v;
const delegateR = sig1.r;
const delegateS = sig1.s;

const sig2 = Util.ecsign(
Buffer.from(hashToSign.slice(2), 'hex'),
Buffer.from(s1Private.slice(2), 'hex')

);

const securityV = sig2.v;
const securityR = sig2.r;
const securityS = sig2.s;

const destroyReceipt = await idContract.destroy(
i1,
delegateV,
delegateR,
delegateS,
securityV,
securityR,
securityS,
{ from: i1 }

);

await expectEvent(destroyReceipt, 'Destroy', {
identity: i1

});

20 Chapter 1. Contents

Signata, Release 0.1

1.6.6 Rolling Over an Identity

Much like the destruction event, rollovers also need signatures from both the delegate and security keys. Rollover
will transfer control of an identity address to new delegate and security keys, the identity itself will remain the same.

After this mutation has been made the old delegate and security keys can no longer be used.

const TXTYPE_ROLLOVER_DIGEST =
→˓'0x3925a5eeb744076e798ef9df4a1d3e1d70bcca2f478f6df9e6f0496d7de53e1e';
const inputHash = web3.utils.sha3(

TXTYPE_ROLLOVER_DIGEST
+ d3.slice(2).padStart(64, '0')
+ s3.slice(2).padStart(64, '0')
+ "0x00".slice(2).padStart(64, '0'), {encoding: 'hex'});

const hashToSign = web3.utils.sha3(
'0x19' + '01' + DOMAIN_SEPARATOR.slice(2) + inputHash.slice(2),
{encoding: 'hex'}

);

const sig1 = Util.ecsign(
Buffer.from(hashToSign.slice(2), 'hex'),
Buffer.from(d2Private.slice(2), 'hex')

);

const delegateV = sig1.v;
const delegateR = sig1.r;
const delegateS = sig1.s;

const sig2 = Util.ecsign(
Buffer.from(hashToSign.slice(2), 'hex'),
Buffer.from(s2Private.slice(2), 'hex')

);

const securityV = sig2.v;
const securityR = sig2.r;
const securityS = sig2.s;

const rolloverReceipt = await idContract.rollover(
i2,
delegateV,
delegateR,
delegateS,
securityV,
securityR,
securityS,
d3,
s3,
{ from: d2 }

);

await expectEvent(rolloverReceipt, 'Rollover', {
identity: i2,
delegateKey: d3,

(continues on next page)

1.6. Identities 21

Signata, Release 0.1

(continued from previous page)

securityKey: s3,
});

1.7 Integrations

1.8 Links

This document details all links to external services related to the Signata token.

1.8.1 News

• Blog

• Twitter

• Telegram

1.8.2 Development Community

• Discord

• Github

1.8.3 Exchanges

SATA

• Ethereum Uniswap V2 SATA-WETH

• Ethereum Uniswap V3 SATA-WETH

• Ethereum Bancor SATA-BNT

• Ethereum Sushiswap SATA-WETH

• P2PB2B SATA-USDT

• Coinsbit SATA-USDT

• TimeX SATA-USDT

• Binance Smart Chain ApeSwap SATA-WBNB

22 Chapter 1. Contents

https://blog.congruentlabs.co
https://twitter.com/satatoken
https://t.me/signatanews
https://discord.gg/pEJu4ZjnfX
https://github.com/congruentlabs
https://v2.info.uniswap.org/pair/0xbc00e708c407d7633f7504434e74c13e171de7f1
https://info.uniswap.org/#/pools/0xe72d262158f402faf553179b2b4aff23dfad6d4c
https://app.bancor.network/swap?from=0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE&to=0x3ebb4A4e91Ad83BE51F8d596533818b246F4bEe1
https://app.sushi.com/analytics/tokens/0x3ebb4a4e91ad83be51f8d596533818b246f4bee1?chainId=1
https://p2pb2b.com/trade/SATA_USDT/
https://coinsbit.io/trade_classic/SATA_USDT
https://timex.io/private/trading/SATAUSDT
https://info.apeswap.finance/pair/0xba593c9619301409d506332417236caeb0453d09

Signata, Release 0.1

dSATA

• Ethereum Uniswap V2 dSATA-WETH

1.9 Risk

Warning: Any source code provided on this site is unaudited and provides no guarantee that it will be functional
or safe to use. Ensure you test before deploying to mainnet or production use.

1.9.1 signata-risk-api

Deployment

The Risk API is a python flask service using Supabase for record retrieval and storage. It can be easily deployed on
services like DigitalOcean with the following environment variables set:

SUPABASE_URL

SUPABASE_KEY

The Congruent Labs Risk API service is hosted at https://risk.signata.net/

Get Risk Level

Request:

GET /api/v1/riskLevel/{addr}

Response:

Just responding with single values in the body for consumption by oracles.

0 - unknown risk level

1...5 - risk levels

Errors:

400 - Invalid Address

Add Risk Event

Request:

POST /api/v1/riskEvent

Response:

200 OK

Errors:

400 - Invalid Address

1.9. Risk 23

https://v2.info.uniswap.org/pair/0x4eeea05c9318d6bd9ddaa5a6a001f1916fbd4c9f
supabase.com
https://m.do.co/c/7802e11be119

Signata, Release 0.1

1.10 Veriswap

24 Chapter 1. Contents

	Contents
	Chains
	Contracts
	Ethereum Mainnet
	Ethereum Rinkeby
	Binance Smart Chain Mainnet
	Avalanche C-Chain
	LGCY Network
	Metis Stardust Network (Testnet)
	Metis Andromeda Network (Mainnet)
	Fantom Mainnet

	DAO
	Management
	Interface
	Timelock
	Governor

	Design
	Abstract
	Introduction
	Product Description
	IdGAF (Identity Guard & Anonymity Framework)
	Self-Asserted Identity Authorities
	Anonymized Identity Providers (DeREx)
	Decentralized X.509 (Dex509)

	Disclaimer

	Examples
	Applying Signata Identities to Authentication Systems
	Claims-based Enforcement

	Applying Signata Identities to Smart Contracts
	Simple Access Control
	Rights Based Access Control
	Business Register
	Staking Pool
	Token Lock
	DAO Governor with Identity Validation
	Batch Airdrop
	Merkle Airdrop
	Dividend Rewards Distribution

	Identities
	About Signata Identities
	About Key Lifecycles
	Identity Key
	Delegate Key
	Security Key
	Domain Separator

	Creating an Identity
	Locking an Identity
	Unlocking an Identity
	Destroying an Identity
	Rolling Over an Identity

	Integrations
	Links
	News
	Development Community
	Exchanges
	SATA
	dSATA

	Risk
	signata-risk-api
	Deployment
	Get Risk Level
	Add Risk Event

	Veriswap

